Vehicle emissions of short-lived and long-lived climate forcers: trends and tradeoffs.

نویسندگان

  • Morgan R Edwards
  • Magdalena M Klemun
  • Hyung Chul Kim
  • Timothy J Wallington
  • Sandra L Winkler
  • Michael A Tamor
  • Jessika E Trancik
چکیده

Evaluating technology options to mitigate the climate impacts of road transportation can be challenging, particularly when they involve a tradeoff between long-lived emissions (e.g., carbon dioxide) and short-lived emissions (e.g., methane or black carbon). Here we present trends in short- and long-lived emissions for light- and heavy-duty transport globally and in the U.S., EU, and China over the period 2000-2030, and we discuss past and future changes to vehicle technologies to reduce these emissions. We model the tradeoffs between short- and long-lived emission reductions across a range of technology options, life cycle emission intensities, and equivalency metrics. While short-lived vehicle emissions have decreased globally over the past two decades, significant reductions in CO2 will be required by mid-century to meet climate change mitigation targets. This is true regardless of the time horizon used to compare long- and short-lived emissions. The short-lived emission intensities of some low-CO2 technologies are higher than others, and thus their suitability for meeting climate targets depends sensitively on the evaluation time horizon. Other technologies offer low intensities of both short-lived emissions and CO2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near-term climate mitigation by short-lived forcers.

Emissions reductions focused on anthropogenic climate-forcing agents with relatively short atmospheric lifetimes, such as methane (CH4) and black carbon, have been suggested as a strategy to reduce the rate of climate change over the next several decades. We find that reductions of methane and black carbon would likely have only a modest impact on near-term global climate warming. Even with max...

متن کامل

Managing short-lived climate forcers in curbing climate change: an atmospheric chemistry synopsis

The Montreal Protocol has set an extraordinary example by applying scientific discoveries, technological innovations, and swift political actions to solving one of the most urgent environmental problems facing humans. With its ongoing implementation, the stratospheric ozone is expected to return to its 1980 levels around mid-twenty-first century. In addition, the Montreal Protocol has contribut...

متن کامل

Disentangling the effects of CO2 and short-lived climate forcer mitigation.

Anthropogenic global warming is driven by emissions of a wide variety of radiative forcers ranging from very short-lived climate forcers (SLCFs), like black carbon, to very long-lived, like CO2. These species are often released from common sources and are therefore intricately linked. However, for reasons of simplification, this CO2-SLCF linkage was often disregarded in long-term projections of...

متن کامل

Multimodel projections of climate change from short-lived emissions due to human activities

[1] We use the GISS (Goddard Institute for Space Studies), GFDL (Geophysical Fluid Dynamics Laboratory) and NCAR (National Center for Atmospheric Research) climate models to study the climate impact of the future evolution of short-lived radiatively active species (ozone and aerosols). The models used mid-range A1B emission scenarios, independently calculated the resulting composition change, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Faraday discussions

دوره 200  شماره 

صفحات  -

تاریخ انتشار 2017